Protein-mediated Selective Enclosure of Early Replicators Inside of Membranous Vesicles: First Step Towards Cell Membranes

 

Abstract

Containment in cell membranes is essential for all contemporary life, and apparently even the earliest life forms had to be somehow contained. It has been postulated that random enclosure of replicating molecules inside of spontaneously assembled vesicles would have formed the initial cellular ancestors. However, completely random re-formation or division of such primitive vesicles would have abolished the heritability of their contents, nullifying any selective advantage to them. We propose that the containment of the early replicators in membranous vesicles was adopted only after the invention of genetically encoded proteins, and that selective enclosure of target molecules was mediated by specific proteins. A similar containment process is still utilised by various RNA- and retroviruses to isolate their replication complexes from the host’s intracellular environment. Such selective encapsulation would have protected the replicators against competitor and parasitic sequences, and provided a strong positive selection within the replicator communities.

 

References

  1. Ahlquist P (2006) Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Rev Microbiol 4:371382

    Article CAS Google Scholar

  2. Apel CL, Deamer DW (2005) The formation of glycerol monodecanoate by a dehydration/condensation reaction: increasing the chemical complexity of amphiphiles on the early Earth. Orig Life Evol Biosph 35:323–332

    Article PubMed CAS Google Scholar

  3. Apel CL, Deamer DW, Mautner MN (2002) Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim Biophys Acta 1559:1–9

    Article PubMed CAS Google Scholar

  4. Ariga K, Yuki H, Kikuchi J, Dannemuller O, Albrecht-Gary A, Nakatani Y, Ourisson G (2005) Monolayer studies of single-chain polyprenyl phosphates. Langmuir 21:4578–4583

    Article PubMed CAS Google Scholar

  5. Baross JA, Hoffman SE (1983) Submarina hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life 15:327–345

    Google Scholar

  6. Biebricher CK, Eigen M (2005) The error threshold. Virus Res 107:117–127

    Article PubMed CAS Google Scholar

  7. Braun D, Goddart NL, Libchaber A (2003) Exponential DNA replication by laminar convection. Phys Rev Lett 91:158103

    Article PubMed CAS Google Scholar

  8. Chakrabarti AC, Breaker RR, Joyce GF, Deamer DW (1994) Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J Mol Evol 39:555–559

    Article PubMed CAS Google Scholar

  9. Chen IA, Szostak JW (2004a) Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc Natl Acad Sci 101:7965–7970

    Article PubMed CAS Google Scholar

  10. Chen IA, Szostak JW (2004b) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    Article PubMed CAS Google Scholar

  11. Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article PubMed CAS Google Scholar

  12. Chyba CF, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origin of life. Nature 355:125–1331

    Article PubMed CAS Google Scholar

  13. Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61:239–261

    PubMed CAS Google Scholar

  14. Deamer DW (1998) Membrane compartments in prebiotic evolution. In: Brack A (ed) The molecular origins of life: assembling the pieces of the puzzle. Cambridge University Press, Cambridge, UK, pp 189–205

    Google Scholar

  15. Deamer DW, Oró J (1980) Role of lipids in prebiotic structures. BioSystems 12:167–175

    Article PubMed CAS Google Scholar

  16. Deamer DW, Dworkin JP, Sandford SA, Berstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–381

    Article PubMed CAS Google Scholar

  17. Delsemme AH (1998) Cosmic origin of the biosphere. In: Andre B (ed) The molecular origins of life: assembling the pieces of the puzzle. Cambridge University Press, Cambridge, UK, pp 100–118

    Google Scholar

  18. Dworkin JP, Deamer DW, Sandford SA, Allamandola LJ (2001) Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc Natl Acad Sci USA 98:815–819

    Article PubMed CAS Google Scholar

  19. Eigen M (1993) The origin of genetic information: viruses as models. Gene 135:37–47

    Article PubMed CAS Google Scholar

  20. Ferris JP (2002) Montmorillonite catalysis of 30–50 mer oligonucleotides: Laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph 32:311–332

    Article PubMed CAS Google Scholar

  21. Furuuchi R, Imai EI, Honda H, Hatori K, Matsuno K (2005) Evolving lipid vesicles in prebiotic hydrothermal environments. Orig Life Evol Biosph 35:333–343

    Article PubMed CAS Google Scholar

  22. Hanczyc MM, Szostak JW (2004) Replicating vesicles as models of primitive cell growth and division. Curr Opin Chem Biol 8:660–664

    Article PubMed CAS Google Scholar

  23. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618

    Article PubMed CAS Google Scholar

  24. Hanczyc MM, Mansy SS, Szostak JW (2006) Mineral surface directed membrane assembly. Orig Life Evol Biosph 37:67–82

    Article PubMed CAS Google Scholar

  25. Hargreaves WR, Deamer DW (1978) Liposomes from ionic, single-chain amphiphiles. Biochem 17:3759–3768

    Article CAS Google Scholar

  26. Hazen RM, Deamer DW (2007) Hydrothermal reactions of pyruvic acid: synthesis, selection, and self assembly of amphiphilic molecules. Orig Life Evol Biosph 37:143–152

    Article PubMed CAS Google Scholar

  27. Hitz T, Luisi PL (2001) Liposome-assisted selective polycondensation of α-amino acids and peptides. Biopolymers 55:381–390

    Article PubMed CAS Google Scholar

  28. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article PubMed CAS Google Scholar

  29. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article PubMed CAS Google Scholar

  30. Koonin EV, Senkevich TG, Dolja V (2006) The ancient viral world and evolution of cells. Biol Direct 1:29

    Article PubMed CAS Google Scholar

  31. Koonin EV, Wolf YI, Nagasaki K, Dolja VI (2008) A Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Rev Microbiol 6:925–939

    Article CAS Google Scholar

  32. Lee W-M, Ahlquist P (2003) Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J Virol 77:12819–12828

    Article PubMed CAS Google Scholar

  33. Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Google Scholar

  34. Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105:13351–13355

    Article PubMed Google Scholar

  35. Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    Article PubMed CAS Google Scholar

  36. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc Lond B 358:59–83

    Article CAS Google Scholar

  37. Monnard P-A, Deamer DW (2002) Membrane self-assembly processes: steps toward the first cellular life. Anat Rec 268:197

    Article CAS Google Scholar

  38. Monnard P-A, Deamer DW (2003) Preparation of vesicles from nonphospholipid amphiphiles. Methods Enzymol 372:133–151

    Article PubMed CAS Google Scholar

  39. Monnard P-A, Apel CL, Kanavarioti A, Deamer DW (2002) Influence of ionic inorganic solutes on selfassembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiol 2:139–152

    Article CAS Google Scholar

  40. Morowitz HJ, Heinz B, Deamer DW (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18:281–287

    Article PubMed CAS Google Scholar

  41. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34:206–215

    Article PubMed CAS Google Scholar

  42. Namani T, Deamer DW (2008) Stability of model membranes in extreme environments. Orig Life Evol Biosph 38:329–341

    Article PubMed CAS Google Scholar

  43. Noireaux V, Libchaber AA (2004) Vesicle bioreactor as a step toward an artificial cell assembly. Proc Nat Acad Sci USA 101:17669–17674

    Article PubMed CAS Google Scholar

  44. Nomura SM, Yoshikawa Y, Yoshikawa K, Dannenmuller O, Chasserot-Golaz S, Ourrisson G, Nakatani Y (2001) Towards proto-cells: “primitive” lipid vesicles encapsulating giant DNA and its histone complex. Chem Biochem 6:457–459

    Google Scholar

  45. Ourrisson G, Nakatani Y (1999) Origins of cellular life: molecular foundations and new approaches. Tetrahedron 55:3183–3190

    Article Google Scholar

  46. Paula S, Volkov G, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    Article PubMed CAS Google Scholar

  47. Pereto J, Lopez-Garcıa P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477

    Article PubMed CAS Google Scholar

  48. Pietrini AV, Luisi PL (2004) Cell-free protein synthesis through solubilisate exchange in water/oil emulsion compartments. ChemBioChem 5:1055–1062

    Article PubMed CAS Google Scholar

  49. Pohorille A, Schweighofer K, Wilson MA (2005) The origin and early evolution of membrane channels. Astrobiology 5:1–17

    Article PubMed CAS Google Scholar

  50. Poole AM, Jeffares D, Penny D (1998) The path from the RNA world. J Mol Evol 46:1–17

    Article PubMed CAS Google Scholar

  51. Poole A, Penny D, Sjöberg BM (2000) Methyl-RNA: an evolutionary bridge between RNA and DNA? Chem Biol 7:R207–R216

    Article PubMed CAS Google Scholar

  52. Rao M, Eichberg J, Oró J (1982) Synthesis of phosphatidylcholine under possible primitive Earth conditions. J Mol Evol 18:196–202

    Article PubMed CAS Google Scholar

  53. Rao M, Eichberg J, Oró J (1987) Synthesis of phosphatidyethanolamine under possible primitive Earth conditions. J Mol Evol 25:1–6

    Article PubMed CAS Google Scholar

  54. Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer–Tropsch-type synthesis over a temperature range of 100 to 400°C. Orig Life Evol Biosph 31:103–118

    Article PubMed CAS Google Scholar

  55. Rushdi AI, Simoneit BRT (2006) Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions. Orig Life Evol Biosph 36:93–108

    Article PubMed CAS Google Scholar

  56. Sacerdote MG, Szostak JW (2005) Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc Natl Acad Sci 102:6004–6008

    Article PubMed CAS Google Scholar

  57. Schwartz M, Cheng J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514

    Article PubMed CAS Google Scholar

  58. Schwartz M, Cheng J, Lee W-M, Janda M, Ahlquist P (2004) Alternate, virus-induced membrane rearrangements support positive-strand virus genome replication. Proc Natl Acad Sci USA 101:11263–11268

    Article PubMed CAS Google Scholar

  59. Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic non-covalent assemblies. Proc Natl Acad Sci USA 97:4112–4117

    Article PubMed Google Scholar

  60. Segré D, Ben-Eli D, Deamer D, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article PubMed Google Scholar

  61. Spuul P, Salonen A, Merits A, Jokitalo E, Kääriäinen L, Ahola T (2007) Role of the amphiphilic peptide of Semliki Forest virus replicase protein nsP1 in membrane association and virus replication. J Virol 81:872–883

    Article PubMed CAS Google Scholar

  62. Stephan T, Jessberger EK, Heiss CH, Ross D (2003) TOF-SIMS analysis of Polycyclic aromatic hydrocarbons in Alan Hills 84001. Meteorit Plant Sci 38:109–116

    Article CAS Google Scholar

  63. Sunami T, Sato K, Matsuura T, Tsukada K, Urabe I, Yomo T (2006) Femtoliter compartment in liposomes for in vitro selection of proteins. Anal Biochem 357:128–136

    Article PubMed CAS Google Scholar

  64. Szathmary E, Maynard Smith JM (1997) From replicators to reproducers: the first major transitions leading to life. J Theor Biol 187:555–571

    Article PubMed CAS Google Scholar

  65. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article PubMed CAS Google Scholar

  66. Taylor WR (2006) A molecular model for the origin of protein translation in an RNA world. J Theor Biol 243:393–406

    Article PubMed CAS Google Scholar

  67. Thomas JA, Rana FR (2007) The influence of environmental conditions, lipid composition, and phase behavior on the origin of cell membranes. Orig Life Evol Biosph 37:267–285

    Article PubMed CAS Google Scholar

  68. Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci USA 103:10696–10701

    Article PubMed CAS Google Scholar

  69. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article PubMed CAS Google Scholar

  70. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article PubMed CAS Google Scholar

  71. Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100

    Article PubMed CAS Google Scholar

  72. Zubay G (2000) Orgins of life on the earth and in the cosmos, 2nd edn. Academic, San Diego, CA, p 347

    Google Scholar

Acknowledgements

We wish to thank the anonymous referee for his very profound questions and suggestions, which have essentially helped to clarify and focus this manuscript.

Author information

Affiliations

Corresponding author

Correspondence to Kirsi Lehto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laiterä, T., Lehto, K. Protein-mediated Selective Enclosure of Early Replicators Inside of Membranous Vesicles: First Step Towards Cell Membranes. Orig Life Evol Biosph 39, 545–558 (2009). https://doi.org/10.1007/s11084-009-9171-8

Link collected : https://link.springer.com/article/10.1007/s11084-009-9171-8