Abstract

The emergence of the ribosome constituted a pivotal step in the evolution of life. This event happened nearly four billion years ago, and any traces of early stages of ribosome evolution are generally thought to have completely eroded away. Surprisingly, a detailed analysis of the structure of the modern ribosome reveals a concerted and modular scheme of its early evolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. Stillman, B. (ed.) The Ribosome. Cold Spring Harbor Symposia on Quantative Biology (Cold Spring Harbor Laboratory Press, 2001)

    Google Scholar

  2. Crick, F. H. The origin of the genetic code. J. Mol. Biol. 38, 367–369 (1968)

    CAS Article Google Scholar

  3. Gilbert, W. The RNA world. Nature 319, 618 (1986)

    ADS Article Google Scholar

  4. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001)

    ADS CAS Article Google Scholar

  5. Ban, N. et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)

    ADS CAS Article Google Scholar

  6. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001)

    CAS Article Google Scholar

  7. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    ADS CAS Article Google Scholar

  8. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005)

    ADS CAS Article Google Scholar

  9. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001)

    ADS CAS Article Google Scholar

  10. Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416–1419 (1992)

    ADS CAS Article Google Scholar

  11. Nissen, P. et al. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    ADS CAS Article Google Scholar

  12. Gutell, R. R., Larsen, N. & Woese, C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58, 10–26 (1994)

    CAS PubMed PubMed Central Google Scholar

  13. Doudna, J. A. & Rath, V. L. Structure and function of the eukaryotic ribosome: the next frontier. Cell 109, 153–156 (2002)

    CAS Article Google Scholar

  14. Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002)

    Article Google Scholar

  15. Nissen, P. et al. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001)

    ADS CAS Article Google Scholar

  16. Doherty, E. A., Batey, R. T., Masquida, B. & Doudna, J. A. A universal mode of helix packing in RNA. Nature Struct. Biol. 8, 339–343 (2001)

    CAS Article Google Scholar

  17. Polacek, N. & Mankin, A. S. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. Biol. 40, 285–311 (2005)

    CAS Article Google Scholar

  18. Agmon, I., Bashan, A., Zarivach, R. & Yonath, A. Symmetry at the active site of the ribosome: structural and functional implications. Biol. Chem. 386, 833–844 (2005)

    CAS Article Google Scholar

  19. Samaha, R. R., Green, R. & Noller, H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995)

    ADS CAS Article Google Scholar

  20. Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999)

    CAS Article Google Scholar

  21. Hansen, J. L., Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structural insights into peptide bond formation. Proc. Natl Acad. Sci. USA 99, 11670–11675 (2002)

    ADS CAS Article Google Scholar

  22. Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96–100 (1997)

    ADS CAS Article Google Scholar

  23. Savelsbergh, A. et al. Stimulation of the GTPase activity of translation elongation factor G by ribosomal protein L7/12. J. Biol. Chem. 275, 890–894 (2000)

    CAS Article Google Scholar

  24. Kavran, J. M. & Steitz, T. A. Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements. J. Mol. Biol. 371, 1047–1059 (2007)

    CAS Article Google Scholar

  25. Nikulin, A. et al. Structure of the L1 protuberance in the ribosome. Nature Struct. Biol. 10, 104–108 (2003)

    CAS Article Google Scholar

Download references

Acknowledgements

We thank L. Brakier-Gingras, A. Mankin, S. Michnick and I. Ponomarenko for advice and comments. This work was supported by a grant from NSERC.

Author information

Affiliations

Corresponding author

Correspondence to Sergey V. Steinberg.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Notes and Supplementary Figures 1-3 with Legends (PDF 3355 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bokov, K., Steinberg, S. A hierarchical model for evolution of 23S ribosomal RNA. Nature 457, 977–980 (2009). https://doi.org/10.1038/nature07749

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Link collected : https://www.nature.com/articles/nature07749